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Abstract— Existing methods of SLAM are not enough for robots needed to live in crowded environments
such as stations and shopping mall. In this paper, we propose a SLAM and navigation method which is
robust in the crowded environments
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1. はじめに
近年のロボット産業の発展に伴い，警備ロボットや

介護ロボットなどの，自律移動ロボットの導入が期待
されている．一般に，移動ロボットが自律的にナビ
ゲーションを行うためには，障害物の位置情報など
を表した地図が必要となる．未知の環境で移動ロボ
ットが自律的に地図構築・自己位置推定を行う問題は
SLAM(Simultaneously Localization And Mapping)と
呼ばれており，従来から広く研究されてきた．しかし
従来のシステムでは，駅構内やショッピングモールの
ようにたくさんの人が入り乱れている環境下では，安
定した地図構築・自己位置推定ができなかった．
そこで本研究では，複数の画像データから安定した

特徴点を取り出すことで，たくさんの人が存在する混
雑な環境下でオンライン・追加的に地図構築・自己位
置推定を行い，人間が教えた道順通りに自律的に移動
することを目的としている．

2. 先行研究
一般的な SLAMの手法では，環境は静的であると仮

定して処理を行う．そのため，それらの手法を混雑な
環境下で用いた場合，誤って人間のような動いている
物をランドマークとして認識してしまうことによって，
地図構築・自己位置推定に誤りが生じ，アルゴリズム
が破綻してしまうという問題が起こる．
このような問題に対応するためには，大きく分けて

2種類の方法が考えられる．一つ目は，動いている物
体を陽に扱う方法．二つ目は動いている物体を外れ値
として取り除いて処理する方法である．
動いている物体を陽に扱う方法としては，例えば [9]

では，最小二乗法と EMアルゴリズムを用いることで
過去の観測点に対するデータ対応付けのやり直しを可
能とし，動的な物体と静的な物体とを同じ枠組みで扱
う手法が提案されている．
また，動いている物を外れ値として取り除く方法と

しては，例えば [4]ではエントロピーフィルタを用い，
すでに知っている物と，人のように動いている障害物
を分離することで，美術館という人が多い環境下で自

Fig.1 人の多い混雑な環境の例．実験においてロボット
が取得した画像であり，常に多くの人が出入りして
いる

己位置推定を行うツアーロボットが提案されたが，事
前に正確な地図が与えられている必要があった．[5][6]
では動く物体をトラッキングし，SLAMの処理から除
外することで，精度の向上を行っている．しかしこれ
らの研究においては，環境の表現方法や，動いている
物と止まっている物の分離方法など，未解決の問題が
残されている．[7]では，事前に画像データから木など
の静的なものを学習しておき，それをランドマークと
して SLAMに利用することで，人や車などの，事前に
学習したランドマーク以外の物体による誤差を抑える
という手法がとられている．しかし，事前に画像から
ランドマークを学習しておく必要があるため，ロボッ
トを違う環境に適応させる際，新しくランドマークを
覚えなおす必要がある．[8]では，障害物の配置の変化
など，長い時間尺度での環境の変化による新しい観測
データと，過去に訪れた際の観測データとのトレード
オフを考え，徐々に地図を修正する手法がとられてい
る．しかし，動いている人のような，短い時間尺度で
の環境の変化に対するロバスト性については考慮され
ていなかった．

本研究では，動いている物体を取り除いて処理する
方法として，画像から混雑な環境下でも安定な 3次元
上の特徴点を抽出し，その特徴点を用いることで，ロバ
ストに SLAM・ナビゲーションを行う手法を提案する．



Fig.2 本研究で提案するシステム．連続画像とオドメ
トリから 3D-PIRFを抽出することでハイブリッド
マップを構築し，ナビゲーションを行う

3. 提案手法
本研究ではセンサとして単眼全方位カメラと車輪の

エンコーダを用いて地図構築を行う．また環境として
駅構内やショッピングモールのような，たくさんの人
が入り乱れている混雑な環境を想定する．そのような
混雑な環境下では人などが常に動いているため，特徴
点の対応付け・位置計測が難しく，SLAMを行うのは
極めて困難である．
そこで本研究ではカメラから得られる特徴量として，

人の多い混雑な環境下でも安定して得られる 3次元上
の特徴点を用いることで，混雑な環境下でロバストに
SLAM・ナビゲーションを行う手法を提案する．本研
究で提案するシステムを Fig.2に示す．以下，各処理の
詳細を述べる．

3·1 混雑な環境下でも安定な 3次元上の特徴点の抽出

画像を用いた SLAMにおいて多く用いられている特
徴点として，SIFTやコーナー点がある．一般に SIFT
やコーナー点などの局所特徴点は対応付けが取りやす
く，画像を用いた SLAMに適している．しかし，多く
の人が入り乱れる混雑な環境下でロボットが取得した
画像から SIFTを抽出すると，ロボットが少し移動し
ただけで消えてしまうような弱い特徴点や，動いてい
る人物からの特徴点が多く抽出されてしまうという問
題があった．そのような不安定な特徴点が多いと，無
駄に処理時間が延びるだけでなく，地図構築に悪影響
を及ぼすという問題が起こる．
そこで近年，PIRF(Position Invariant Robust Fea-

ture)という特徴量が提案された [1]．PIRFは複数枚の
連続画像から SIFTを抽出して連続的にマッチングを
取り，全ての画像でマッチングが取れた特徴点のみを
抽出する手法である (Fig.3)．PIRFはロボットの移動
に対して見た目の変化の小さい部分を特徴として抽出
することができ，それにともなって，動いている人物
などから抽出される見た目の変化の大きい部分の特徴
点を除外できるという特徴がある．
しかし PIRFは画像から抽出される画像上の特徴点

であり，直接 SLAMに適用することはできない．そこ
で本研究では，連続画像の SIFTにオドメトリの情報
を組み合わせることで，PIRFを 3次元空間にマッピン

Fig.3 連続画像から PIRF[1] を抽出．PIRF は各画像
から抽出された SIFT特徴点のうち，すべての隣り
合った画像間でマッチングがとれた特徴点として抽
出されるため，見た目の変化の大きい部分の特徴点
を除外できる

Fig.4 連続画像の SIFTとオドメトリから 3D-PIRFを
抽出．本論文で提案する 3D-PIRFは PIRF特徴点
の拡張であり，PIRF特徴量とその 3次元位置で表
される

グする (3D-PIRF)手法を提案する．Fig.4は 3D-PIRF
の概念図を表している．3D-PIRFは複数のステップに
おいてロボットが取得した連続画像と，各ステップ間
のオドメトリの情報から，3次元上の特徴点として抽
出される．
ここで，3D-PIRFを抽出するためには特徴点の 3次

元位置を計算する必要があるが，3D-PIRFは過去数ス
テップの観測データを用いるため，ロボットの現在の
状態しか保持しないカルマンフィルタなどの手法と組
み合わせることができないという問題がある．
そこで本研究では SWF(Sliding Window Filter)[2]

を用いる．SWFはカルマンフィルタなどのオンライン
型の手法と，過去全てのデータを用いるバッチ型の手
法との中間的な手法であり，一定期間よりも古い姿勢・
特徴点を消去していくことで，計算時間を一定に保つ
ことができるという特徴がある．これを用いることで，
3D-PIRFの 3次元位置を計算することができ，連続画
像とオドメトリの情報から 3D-PIRFを抽出すること
が可能となる．
このように 3次元上の特徴点である 3D-PIRFを用い

ることで，人の多い混雑な環境下でもロバストに，か
つ特徴点の位置情報を用いた SLAM・ナビゲーション
を行うことが可能となる．



3·2 局所地図を用いたハイブリッド地図の構築

SLAMには大きく分けて，地図を連続的な空間配置
で表すメトリカルな手法と，地図が離散的なグラフ構
造で表されるトポロジカルな手法，それらを組み合わ
せたハイブリッドな手法がある．ハイブリッドな手法
では，各ノードが局所的なメトリカル地図の情報を持
つようなトポロジカルな地図が構築される．
本研究では，ハイブリッドな手法を用いる．ハイブ

リッドな手法はグラフ構造を有するため経路計画が容
易であり，距離情報も用いることが可能であるため，最
短経路の探索など，より高度な経路計画を行うことが
可能であるという特徴がある．
本手法で構築するハイブリッド地図はFig.2に示すも

のである．ロボットの軌跡はノードとエッジによるグ
ラフで表され，各ノードはノード位置周辺で観測した
3D-PIRFの位置mx と分散 Πx の情報を持ち，各エッ
ジはノード間の相対位置 vの情報を持つ．

3·3 Loop-Closingによる軌跡の修正
一般的に SLAMにおいては，移動距離が長くなるほ

ど誤差が蓄積していくという問題がある．地図の誤差
修正を行うためには，現在いる場所が過去に訪れたこ
とのある場所かどうかを認識する必要があるが，その
ための手法としてオンラインでの認識が可能な [2]を
用いる．この手法では，混雑した環境下においてオン
ラインで過去に訪れたことのある場所かどうかを認識
(Loop-Closing検出)することが可能であるという特徴
がある．

Loop-Closingが検出されると，Loop-Closingによる
情報と各時刻のロボットの姿勢 x，ノード間の相対位
置 vから計算される評価関数を最適化するよう軌跡が
修正される (Fig.7)．また，Loop-Closingが検出された
位置では，前に訪れた際にノードの情報として保存し
た局所地図における特徴点の位置と共分散の情報を用
いることで，過去の局所マップを考慮した地図構築を
行う．このように過去の局所地図と現在の観測データ
を組み合わせることで，局所地図の精度の向上を行う
ことが可能となる．

3·4 ナビゲーション

本研究で目標とする移動ロボットの自律移動には学
習フェーズとナビゲーションフェーズがある．
学習フェーズは，人がロボットを操縦することでロ

ボットに通ってほしい道順を教える段階であり，ロボッ
トは移動しながら，前節までで述べた手法によりハイ
ブリッド地図を構築する．
次のナビゲーションフェーズでは，学習フェーズで教

えられた道順通りにロボットが自律的に移動する．移動
ロボットは学習フェーズと同様にハイブリッド地図を構
築しながら移動するが，ナビゲーションフェーズでは，
教えられた道順通りに移動するために，学習フェーズ
で学習したハイブリッド地図と現在のハイブリッド地
図それぞれの軌跡と局所マップを比較することで，学
習した軌跡に追従するように行動計画を行う．

4. 実験結果
実験は 20[m]×20[m]程度の屋内環境 (Fig.1)で行っ

た．この環境は食堂であり，常に多くの人が出入りし，

Fig.5 学習フェーズで移動させた道順．実験は Fig.1の
環境で行い，常に多くの人が出入りしている．以下，
Fig.6から Fig.8まで同様の環境での実験である

混雑している．このような常に人がいる環境の場合，従
来の手法では動いている人から抽出される特徴点が悪
影響を与え，ロバストに SLAM・ナビゲーションを行
うことができなかった．一方本手法では，混雑な環境
下でもロバストに SLAM・ナビゲーションを行えると
いう特徴がある．
まず学習フェーズでは，全方位カメラとエンコーダ

センサを搭載したロボットが人間の操縦によって，提
案手法を用いて自己位置推定と地図構築を行いながら
移動する．Fig.5は環境の真値地図と，学習フェーズで
ロボットを移動させた道順を表しており，まず左下の
赤い実線で示した小さいループを 2週，次に右上に移
動し，そこから青の点線で示した大きなループを 2週．
最後に右上の緑の一点鎖線で示した小さいループを 2
週させた．

Fig.6は以上の経路に対してカメラの情報を使わずオ
ドメトリのみから計算したロボットの軌跡である．図
において，青色の丸はスタート地点，水色の丸はゴー
ル地点を表しており，ルートはスタート地点から徐々
に色が薄くなるように描かれている．この図から，オ
ドメトリのみから計測した場合には移動距離が延びる
ほど自己位置推定の誤差が溜まり，正しい軌跡が学習
出来ていないことがわかる．
一方 Fig.7は提案手法によりロボットが学習した軌

跡である．図において，赤い丸は過去に訪れたことが
あると認識 (Loop-Closing検出)された位置を表してい
る．この図から，移動距離が延びても誤差が溜まって
おらず，ルートを正しく学習出来ていることが分かる．
なお，現在は学習した軌跡の正しさを，スタートから
ゴールまでの軌跡の重なり度合いと，環境の真値地図
との比較から定性的に評価しているが，定量的な評価
ができておらず，今後の課題である．
次にナビゲーションフェーズでは，学習フェーズで

学習した軌跡に沿うように，ロボットが自律的に移動
する．今回は左下から右上まで移動するように経路計
画を行った．Fig.8がロボットが自律的に移動した軌跡
である．図において，学習フェーズで学習した軌跡を



Fig.6 オドメトリのみから計算した軌跡．徐々に誤差が
蓄積している

Fig.7 提案手法により学習した軌跡であり，Fig.6から
改善されている

グレーで，ロボットが移動した軌跡を青で示しており，
学習フェーズで学習した軌跡に対して Loop-Closing検
出がされた位置を赤い丸で示している．この図から，ロ
ボットは学習フェーズで学習した左下から右上に至る
経路に沿うように自律的に移動し，ゴール地点まで到
達できていることがわかる．

5. まとめ
本稿では，人の多い混雑な環境下でロバストに

SLAM・ナビゲーションを行う手法として，画像から得
られる，人の多い混雑な環境下でも安定な特徴点を用
いて SLAM・ナビゲーションを行う手法を提案し，多く
の人が常に映りこんでいる状況下でも安定して SLAM・
ナビゲーションが行えることを確認した．
この技術は将来的にロボットを実環境に適応させ，人

と共存させるためには必要不可欠な要素であり，ロボッ
トの実用化に大きく貢献することが期待できる．また，
本手法は 2輪の移動ロボットだけでなく，車やヒュー

Fig.8 ナビゲーションフェーズでのロボットの軌跡．ス
タート地点からゴール地点まで自律的に移動出来て
いる．

マノイドなど，様々なものに適用することが可能であ
り，広い応用可能性がある．
今後の課題としては，3D-PIRFのより洗練された抽

出方法の検討．また，最短経路探索などナビゲーショ
ンフェーズでのより高度な経路計画などが挙げられる．
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