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はじめに

近年のロボット産業の発展に

ともない、警備ロボットや介護ロ

ボットなどの、自律移動ロボット

の導入が期待されている。一般

に、移動ロボットが自律的にナビ

ゲーションを行うためには、障害

物の位置情報などを表した地図の

構築と、地図を用いた自己位置推

定が必要となる。未知の環境で移

動ロボットが自律的に地図構築・

自己位置推定を行う問題は SLAM

（Simultaneously Localization 

And Mapping）、行動計画を行う問

題はナビゲーションとよばれ、従

来から広く研究されてきた。

SLAM・ナビゲーションにおけ

る従来の手法の多くは、レーザ測

域センサを用いていた。測域セン

サを用いた手法は、乱雑でなく閉

じた環境には適用できるが、起伏

の多い環境や混雑した環境では十

分な性能を発揮できなかった。さ

らに、測域センサは高価であるた

め、測域センサを搭載した自律移

動ロボットの導入には大きなコス

トが必要だった。そこで近年特に

注目されているのがカメラを用い

た手法である。カメラから得られ

る情報は豊富であり、環境に関す

る多くの情報が得られる。さらに

近年はカメラの小型化・低価格化

により、ロボットや携帯電話など

さまざまなデバイスに搭載可能と

なっている。

そのようなカメラを用いた手

法の多くは、画像上の局所的な特

徴点としてコーナ点や SIFT など

をランドマークとして用いてい

た。しかしそれらのシステムでは、

駅構内やショッピングモールの

ように不特定多数の人が入り乱れ

近年のロボット産業の発展にともない、警備ロボットや介護ロボットなどの、人の生活環境で安全に動
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第1図　人の多い混雑な環境の例(東京工業大学の食堂)。実験において実際にロ
ボットが取得した画像。常に不特定多数の人が出入りしている。
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ている環境下では、安定した地図

構築・自己位置推定ができなかっ

た。その理由としては、混雑な環

境下で画像から特徴点を抽出した

場合、人間のように動いている物

からも特徴点が抽出されることが

原因として挙げられる。そのよう

な特徴点をランドマークとして認

識してしまうことによって、地図

構築・自己位置推定に誤りが生じ、

アルゴリズムが破綻してしまうと

いう問題が起こる。そのため、現

在実用化されている技術では、人

混みのような変動要因の大きな環

境で移動ロボットを稼働させるに

は、あらかじめ床に誘導ラインを

引くなどの事前の作り込みが必要

だった。

そこで我々は、単眼カメラか

ら連続的に取得した複数の画像

とオドメトリ ( タイヤの回転角

を用いた自己位置推定 ) の情報

から安定な三次元上の特徴点を

抽出することで、混雑な環境下

でも安定な SLAM・ナビゲーショ

ンを行う手法を構築した。なお、

この手法では移動ロボットは学

習フェーズとナビゲーションフ

ェーズとよぶ処理を行う。学習

フェーズは人間が操縦すること

によってロボットを移動させ、

ロボットに通ることのできる経

路を覚えさせる処理であり、ナ

ビゲーションフェーズは覚えた

経路上で行動計画を行い、任意

の位置に自律的に移動する処理

である。3 章の実験結果では、本

手法を用いることで不特定多数

の人が入り乱れる混雑した環境

下でも、移動ロボットが経路を

学習し、自律的に行動できるこ

とを見る。

混雑な環境下での
SLAM・ナビゲーショ
ン手法

本手法ではセンサとして単眼

全方位カメラと車輪のエンコーダ

を用いて地図構築を行う。また環

境として駅構内やショッピングモ

ールのような、不特定多数の人が

入り乱れている混雑な環境を想定

する。そのような混雑な環境下で

は動いている人などから多くの特

徴点が抽出されるため、SLAM を

行うのは極めて困難である。

そこで本手法では、カメラか

ら得られる特徴点として、人の多

い混雑な環境下でも安定して得ら

れる三次元上の特徴点を用いるこ

とで、混雑な環境下でロバストに

SLAM・ナビゲーションを行う。我々

が構築したシステムを第 2 図に示

す。以下、各処理の詳細を述べる。

混雑な環境下でも安定な三次元上
の特徴点の抽出

画像を用いた SLAM において多

く用いられている特徴点として、

SIFT やコーナ点がある。一般に

SIFT やコーナ点などの局所特徴

点は対応付けが取りやすく、画像

を用いた SLAM に適している。し

かし、不特定多数の人が入り乱れ

る混雑な環境下でロボットが取得

した画像からそれらの特徴点を抽

出すると、動いている人物からの

第３図　連続画像から、我々独自の局所特徴量であるPIRF1）2） を抽出。PIRF は
各画像から抽出されたSIFT 特徴点のうち、すべての隣り合った画像間で
マッチングがとれた特徴点として抽出されるため、見た目の変化の大き
い部分の特徴点を除外できる。

第２図　構築したシステム。連続画像とオドメトリから3D-PIRF を抽出すること
でハイブリッド地図を構築し、ナビゲーションを行う。
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（Sliding Window Filter）3）を用

いた定式化を行い、特徴点の位置

推定を行った。SWF はカルマンフ

ィルタなどのオンライン型の手法

と、過去すべてのデータを用いる

バッチ型の手法との中間的な手法

であり、一定期間よりも古い姿勢

・特徴点を周辺化して消去してい

くことで、計算時間を一定に保て

るという特徴がある。これを用い

ることで、連続画像とオドメトリ

の情報から 3D-PIRF の三次元位

置を推定可能となる。

局所地図を用いたハイブリッド地
図の構築

SLAM には大きく分けて、地図

を連続的な空間配置で表すメトリ

カルな手法と、地図が離散的なグ

ラフ構造で表されるトポロジカル

な手法、それらを組み合わせたハ

イブリッドな手法がある。ハイブ

リッドな手法では、各ノードが局

所的なメトリカル地図の情報を持

つようなトポロジカルな地図が構

築される。本手法では、ハイブリ

特徴点や、ロボットが少し移動し

ただけで観測できなくなるような

不安定な特徴点が多く抽出される

という問題があった。そのような

不安定な特徴点が多いと、地図構

築、自己位置推定に悪影響を及ぼ

すという問題が起こる。

そ こ で 近 年 我 々 は、PIRF

（Position Invariant Robust 

Feature）という特徴量を提案し

た 1）2）。PIRF は複数枚の連続画

像から SIFT を抽出して連続的に

マッチングを取り、すべての画像

でマッチングが取れた特徴点のみ

を抽出する手法である（第 3 図）。

PIRF はロボットの移動に対して

見た目の変化の小さい部分を特徴

点として抽出でき、逆に、動いて

いる人物などから抽出される見た

目の変化の大きい部分の特徴点を

除外できるという特徴がある。

しかし PIRF は画像から抽出さ

れる画像上の特徴点であり、直

接 SLAM に適用することはできな

い。そこで本手法では、連続画像

の特徴点にオドメトリの情報を組

み合わせることで、PIRF を三次

元空間にマッピングする手法を構

築した。以後、この三次元空間に

マッピングした特徴点を 3D-PIRF 

とよぶ。第 4 図は 3D-PIRF の概

念図を表している。3D-PIRF は複

数のステップにおいてロボットが

取得した連続画像と、各ステップ

間のオドメトリの情報から、三次

元上の特徴点として抽出される。

なお、三次元位置の推定には過去

数ステップの観測データが必要で

あるため、ロボットの現在の状態

しか保持しないカルマンフィルタ

などの手法を使えないという問

題がある。そこで本手法では SWF

ッドな手法を用いる。ハイブリッ

ドな手法はグラフ構造を有するた

め経路計画が容易であり、距離情

報も用いることが可能であるた

め、最短経路の探索など、より高

度な経路計画を行えるという特徴

がある。本手法で構築するハイブ

リッド地図は第 2 図の図中に示す

ものである。ロボットの経路はノ

ードとエッジによるグラフで表さ

れ、各ノードはノード位置周辺で

観測した 3D-PIRF の位置と分散

の情報を持ち、各エッジはノード

間の相対位置の情報を持つ。

Loop-Closing による経路の修正
一般的に SLAM においては、移

動距離が長くなるほど誤差が蓄積

する問題が起こり、本手法の場

合、誤差は経路のゆがみとして蓄

積する。この経路の誤差を修正す

るには、現在いる場所が過去に訪

れたことのある場所かどうかを判

断し、その情報を用いて経路を

計算し直す（Loop-Closing）必

要がある。本手法では過去に訪れ

人混みでも環境地図を学習して稼働する自律移動ロボットを開発

第４図　連続画像から抽出したSIFTの観測データ とオドメトリのデータから
3D-PIRF を抽出。本手法で提案した 3D-PIRF はPIRF 特徴点の拡張であ
り、PIRF 特徴量とその三次元位置で表される。
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たことのある場所かどうかを認識

するための手法として、近年我々

が提案したオンラインでの Loop-

Closure 検出手法である [4] を

用いる。この手法では画像から抽

出する特徴量として PIRF を用い

ており、混雑した環境下で過去

に訪れたことのある場所かどう

かをオンライン、追加的に認識

（Loop-Closure 検出）可能である。

Loop-Closure が検出されると、

Loop-Closure による情報と各時

刻でのロボットの姿勢、ノード間

の相対位置の情報から経路が修正

される。この処理により、誤差が

蓄積することなく経路を学習でき

る。 

ナビゲーション
本手法は移動ロボットの自律

ナビゲーションが目標であり、移

動ロボットは学習フェーズとナビ

ゲーションフェーズを行う。学習

フェーズは人がロボットを操縦す

ることでロボットに通ることので

きる経路を教える段階であり、ロ

ボットは移動しながら前節までで

述べた方法によりハイブリッド地

図を構築することで、通ることの

できる経路を学習する。

次のナビゲーションフェーズ

では、学習フェーズで学習した経

路を用いて自律的に移動する。具

体的には、まず学習フェーズで学

習した経路上で、スタート地点と

ゴール地点を指定する。すると移

動ロボットは学習した経路上でス

タート地点からゴール地点までの

最短経路を探索し、その経路に沿

ってスタート地点からゴール地点

まで自律的に移動する。具体的な

行動計画としては、ロボットはま

ず最短経路上で最も近いノードを

探し、そのノードの数ステップ先

のノードをサブゴールとして設定

する（第 5 図）。そして現在のロ

ボットの向いている方向と、サ

ブゴールの方向との差 φ を求め、

その値によって、サブゴールに近

づくように左右の車輪の速度を決

定する。この処理によりロボット

は計画した最短経路に沿って移動

を行う。

人混みでの稼働実験

今回用いた自律移動ロボット

は iXs Research 社の iWs09（第

6 図）である。ロボットには、高

さ約 130[mm] の位置にヴィスト

ン株式会社の全方位カメラが搭載

されており、800 × 600 画素で環

境の全方位画像を取得できる。ま

た、下部前面に北陽電機社の二次

元のレーザ距離計が搭載されてお

り、障害物の有無を確認できる。

モータは MAXON 社のものが用い

られており、エンコーダによりモ

ータの回転角度を検出できる。処

理にはロボットに搭載したノー

ト PC を用いる。CPU は Core2Duo 

2.54[GHz]、メモリは 2[GB] であ

り、プログラムは MATLAB を用い

て記述した。

実験は 20[m] × 20[m] 程度の

屋内環境 ( 第 1 図 ) で行った。

この環境は食堂であり、常に不特

定多数の人が出入りし、混雑して

いる。このような常に人がいる環

境の場合、従来の手法では動いて

いる人から抽出される特徴点が悪

影響を与え、ロバストに SLAM・

ナビゲーションを行えなかった。

一方本手法では、混雑な環境下で

もロバストに SLAM・ナビゲーシ

ョンを行えるという特徴がある。

まず学習フェーズでは、全方

第５図　ナビゲーションフェーズでのロボットの行動計画

第６図　実験で用いた自律移動ロボッ
ト。上部に全方位カメラ、
下部前面に測域センサが搭
載されており、すべての制
御はロボットに搭載された
ノートPCで行う。
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させた。第 10 図は以上の経路に

対してカメラの情報を使わずオド

メトリのみから計算したロボット

の経路である。図において、左の

丸はスタート地点、右上の丸はゴ

ール地点を表している。この図か

位カメラとエンコーダセンサを搭

載したロボットが人間の操縦によ

って、本手法を用いて自己位置推

定と地図構築を行いながら移動す

る。第 7 図は環境の真値地図と、

学習フェーズでロボットを移動さ

せた道順を表しており、まず左下

の実線で示した小さいループを 2

周、次に右上に移動し、そこから

点線で示した大きなループを 2 周

人混みでも環境地図を学習して稼働する自律移動ロボットを開発

ら、オドメトリのみから計測した

場合には移動距離が延びるほど自

己位置推定の誤差が溜まり、正し

い経路が学習出来ていないことが

わかる。

この環境において 3D-PIRF を抽

出した例が第 8 図、第 9 図である。

この位置では PIRF が 21 個抽出

第７図　学習フェーズで移動させた経路。実験は第1図の環境で行い、常に不特
定多数の人が出入りしている。今回は、まず実線のループを右回りに2
周させた後、右上に移動し、点線のループを2周させた。ただし、経路
はどのような順番で学習させてもよい。

第８図　実験においてロボットの取得
した画像

第９図　第8図から抽出されたPIRF。
動いている人の周囲からは
抽出されず、掲示物や蛍光
灯、窓枠などの、ロボット
から比較的安定して観測で
きるもののみから抽出され
ている。

第10図　オドメトリ(タイヤの回転角を用いた自己位置推定)のみから計算した経
路。徐々に誤差が蓄積している。(左はカラー用、右はモノクロ用)
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された。この図から、3D-PIRF は

動いている人の周囲からは出ず、

比較的遠くにある掲示物や蛍光

灯、窓枠などの、ロボットから比

較的安定に観測できるもののみか

ら抽出されていることがわかる。

このように、3D-PIRF は混雑な環

境下でも比較的安定して観測でき

る物から多く抽出されるため、本

手法を用いることで安定して自己

位置推定・地図構築を行うことが

できる。

第 11 図は本手法によりロボッ

トが学習した経路である。図に

おいて、丸で表されているのは

過去に訪れたことがあると認識

(Loop-Closure 検出 ) された位置

である。この図から、移動距離が

延びても誤差が溜まっておらず、

Loop-Closing 処理を行うことに

よってルートを正しく学習出来て

いることが分かる。 

次にナビゲーションフェーズ

では、学習フェーズで学習した経

路に沿うように、ロボットが自律

的に移動する。今回は左下から右

上まで移動するように経路計画を

行った。第 12 図はロボットが自

律的に移動した経路である。図

において、学習フェーズで学習

した経路を薄いグレーで、ナビゲ

ーションフェーズでロボットが移

動した経路を濃いグレーで示して

おり、過去に訪れたことがあると

認識 (Loop-Closing 検出 ) され

た位置を黒い丸で示している。こ

の図から、ロボットは学習フェー

ズで学習した経路を用いて左下か

ら右上に至る経路計画を行い、自

律移動してゴール地点まで到達で

きていることがわかる。また、第

13 図はナビゲーションフェーズ

での移動ロボットと環境の写真で

あり、混雑な環境下で自律的に移

動していることがわかる。

なお、移動途中の左カーブの

部分で、ロボットが学習した経

路から外れていることがわかる。

これは左カーブの付近で Loop-

Closure 検出が行えず、自己位置

推定に誤差が乗ったためであると

考えられる。再び Loop-Closure

第11図　本手法により学習した経路。第10図で生じていた経路のずれがなくな
り、オドメトリのみから計算した経路(第10図)から改善されている。
(左はカラー用、右はモノクロ用)

第12図　ナビゲーションフェーズでのロボットの経路。学習した経路を薄いグレ
ーで示し、その学習データを用いて実際にロボットが移動した経路を
濃いグレーで示す。 Loop-Closureが検出された位置は黒い丸で示す(詳
細は本文参照)。この図から、スタート地点からゴール地点まで自律的
に移動出来ていることがわかる。(左はカラー用、右はモノクロ用)
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人混みでも環境地図を学習して稼働する自律移動ロボットを開発

検出が行われると、もとの経路に

戻れている。

現状では 1 ステップあたりの計

算時間は平均 3.87[s]、移動速度

は平均 38.4[mm/s] である。現在、

速度と精度の向上が目標であり、

消費電力が低く、高い演算能力の

見込める GPGPU による実装に取り

組んでいる。

おわりに

本稿では、人の多い混雑な環

境下でロバストに SLAM・ナビゲ

ーションを行う手法として、画像

から得られる、人の多い混雑な環

境下でも安定な特徴点を用いて

SLAM・ナビゲーションを行う我々

の手法を紹介し、不特定多数の

人が常に映りこんでいる状況下で

も安定して SLAM・ナビゲーショ

ンが行えることを見た。この技術

は将来的にロボットを実環境に適

応させ、人と共存させるためには

必要不可欠な要素であり、ロボッ

トの実用化に大きく貢献すること

が期待できる。また、本手法は 2 

輪の移動ロボットだけでなく、車

やヒューマノイドなど、様々なも

のに適用でき、広い応用可能性が

ある。
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第13図　ナビゲーションフェーズでのロボットの稼働の様子。混雑した環境下で
も自律的にゴールに向かって移動している。


