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あらまし 本論文では，実世界における一般問題解決システムの構築を目的とし，既存のプランナを利用した
3層構造のアーキテクチャを提案する．提案手法は自己増殖型ニューラルネットワーク（SOINN）により物体の
概念を形成し，また，環境や人間との相互作用を通じて知識をオンラインかつ追加的に獲得する．更に，獲得し
た複数の知識を一般問題解決器（GPS）により能動的に運用し，実世界における汎用的な問題解決が可能である．
実験により，提案手法を実装したヒューマノイドロボットを用いて，提案手法が実世界における汎用のタスクに
対して有効であることを示す．
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1. ま え が き

実世界において知的に振る舞うヒューマノイドロ

ボットの実現には，ロボットの動作に必要な制御理論

や知能に関する情報理論のほか，多岐にわたる幅広

い研究分野の密接な連携が必要となる．その中でも

ヒューマノイドロボットの運動制御に関しては，本田

技研の ASIMOに代表されるような自律二足歩行に関

する研究や，小型ヒューマノイドロボットを用いた物

体操作の学習に関する研究 [1] など，民間企業や研究

機関において盛んに研究が行われている．しかし一方

で，ヒューマノイドロボットの知能情報処理に関して
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は，特に [2] の要求仕様にある「非定型の作業が自律

的に実行できる」とする研究はこれまでに報告されて

いない．そこで本研究では，ヒューマノイドロボット

の知能，具体的には実世界における汎用的な問題解決

をキーワードとし，その足掛りとなるアーキテクチャ

を提案する．

従来の知能ロボットは，設計者があらかじめ考えら

れる状況や行動をロボットに組み込むことで実現して

きた．つまり，if Q1 then A1（Q1 という状況で A1

という行動をとる）といった if-thenルールを大量に

組み込むことによって，あたかもロボットが状況に合

わせて知的に行動しているかのように見せてきた．し

かしそのようなシステムでは，状況が想定範囲を外れ

た途端に破綻してしまう．特に実世界のような常に複

雑に変化する環境に対して，その時々に適切な行動を

あらかじめ組み込んでおくことは不可能である．

そうした従来法に代わるアプローチとして，ロボッ

トの根本的な設計論に着眼した認知発達ロボティクス

（Cognitive Developmental Robotics [3]：以後CDR）

がある．CDRではロボットの身体性に焦点を当て，ロ

ボット自身が自らの身体を通じて環境と接し，その結

果として世界から得られる情報を理解する過程が重要

であるとしている．つまり CDRの基本概念は，環境
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との相互作用を通じてロボットが自らの行動を認識・

学習することで，様々な状況に対応可能な経時的に発

達するシステムを構築することにある．CDR の必要

性は「ロボット分野に関するアカデミック・ロードマッ

プ [4]」においても指摘されている．

更に，Wengらはロボットの知能発達という観点か

ら，発達システムのもつべき性質を以下のようにまと

めている [5]．

I . タスクに特有なシステムではない

II . タスクがシステムの設計者にとって未知である

III. 未知のタスクに対するアプローチを生成できる

IV. オンライン学習が可能である

V . オープンエンド学習が可能である

CDR に基づく手法であれば，III. 以外のすべての

性質を満たすことが原理的には可能である．しかし性

質 III.は，知能レベルにおいて他の性質とは一線を画

すものである．この性質は知識（タスクに対する解決

法，以後これを知識と表現する）を “獲得” するだけ

でなく，知識を自律的に “生成” する能力を求めてい

る．これを実現するには CDRの基本概念に加え，既

存の知識を利用して新しい知識を生み出すメカニズム

が必要となる．

小倉らは，ヒューマノイドロボットのための簡易で

環境が変化しても再現可能なオンラインでの教示シス

テムを開発した [6]．このシステムでは人間がその場で

ロボットの身体を直接触って動作を教示することで，

新しいタスクや環境での行動獲得が可能である．例え

ば，キッチンなどの生活環境においてロボットがコッ

プのつかみ方を知らない場合，人間がロボットの手先

をもって即座に教示できる．このロボットは教示時の

目標状態だけを記憶し，動作再現時に教示時と自己の

位置が異なったり，途中に障害物がある場合でも教示

された動作を再現（目的再現）することができる．こ

のロボットの目的再現は，一見知識を生成しているよ

うに見える．しかし，これは教示時とは動作系列が異

なるという意味では自律的な行動生成はしてはいるも

のの，タスク全体としてはTeaching-Playbackにほか

ならない．つまり知識そのものを生成してはおらず，

Wengらの示す性質 III.を満たしていない．

例えば，人間の教示によってロボットが「目の前に

あるコップを手に取る」という知識と「手にもってい

るコップを洗う」という知識を獲得したとする．この

とき，小倉らの手法ではロボットはこれらに対応した

二つのタスクは実行できるが，「コップを手にもってい

ない状態で目の前にあるコップを洗う」という新しい

タスクは実行できない．これを実現するには，ロボッ

トは「目の前にあるコップを手に取って，手にもった

コップを洗う」という一連の作業をあらかじめ一つの

知識として獲得しておかなければならない．しかし

我々人間は，そうした一連の作業を直接的に教えられ

ていなくても，既存の知識を組み合わせることでこの

タスクを実行できる．このように人間と同じようにし

て，汎用のタスクに対して既存の知識を能動的に運用

し，新たな知識を生成可能な知能ロボットの実現が求

められる．

1. 1 本研究の目的

本研究では，III.を含めWengらの示す性質をすべ

て満たす，実世界における一般問題解決システムを提

案する．提案手法は図 1 に示すアーキテクチャであ

り，提案手法を実装したロボットは以下の特長をもつ．
• ロボットは視覚や聴覚から得られるパターンか

ら物体の概念（シンボル）を形成する：シンボルグラ

ウンディング問題 [7] に関しては依然議論が続いてい

るが，提案手法ではパターンをシンボルにマップする

インタフェースとして，オンライン追加学習が可能な

ニューラルネットワークを用いる．
• ロボットは環境や人間とのインタラクションに

よって行動の因果関係を知識としてオンラインかつ追

加的に獲得する：ロボットの動作は小倉らのシステム

と同様，人間がロボットの手先をもって誘導すること

で教示する．

図 1 提案手法のアーキテクチャ：入力層の黒矢印は処理
の流れ，各層間の矢印はデータの流れ，シンボル記
憶層の白矢印はオペレータ（知識）の生成を意味し
ている．また，パターン記憶層内の境界は，ロボッ
トの動作情報が SOINN 空間とは別の空間に保持さ
れることを意味している．

Fig. 1 The architecture of the proposed method.
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• ロボットは既存の知識を組み合わせることで未

知のタスクに対するアプローチを生成できる：これは，

知識を能動的に運用する手段として古くから知られ

るプランナの一つである，一般問題解決器（General

Problem Solver [8]：以後 GPS）を使用することで実

現する．

1. 2 本研究の優位性

本研究で提案するアーキテクチャは，図 1 に示す

ように，パターンの入力層とシンボル情報を保持する

シンボル記憶層の間に複数のニューラルネットワーク

（Self-Organizing Incremental Neural Network [9]：

以後 SOINN．SOINNについての詳細は 2. 3. 1で述

べる）を含むパターン記憶層を挿入した構成になって

いる．本アーキテクチャの優位性を以下に示す．アー

キテクチャについての詳細は 2.で述べる．
• SOINNの高いノイズ耐性を引き継ぎ，実世界

における不安定なパターンに対して頑健に振る舞うこ

とができる．また，SOINNのオンライン追加学習が

可能という性質から，知識獲得と問題解決に必要な物

体の概念をオンラインかつ追加的に形成できる．
• ロボットに必要とされる，視覚や聴覚といった

複数の感覚を用いたマルチモーダルな情報処理が可能

である．本研究では画像と音声のデータのみ扱うが，

パターン記憶層に別の SOINN空間を用意することで，

それ以外の各種センサデータ等も容易に取り込むこと

ができる．
• 物体の概念を表現するパターンの集合は，個々

のオペレータ（知識としてシンボル記憶層に保持され

ている）の中に保持されるのではなく，パターン記憶

層において概念ごとに保持される．そのため，シンボ

ル記憶層ではパターン記憶層で形成された概念を一つ

ひとつのシンボルとして共有でき，シンボル記憶層に

おけるオペレータの記憶容量を大幅に節約できる．

以下，本論文は次のように構成されている．まず，

2.では提案手法の詳細について述べる．次に 3.と 4.

にてヒューマノイドロボットを用いた実験について述

べる．5.で考察と今後の課題について述べ，最後に 6.

をむすびとする．

2. 提 案 手 法

2. 1 ヒューマノイドロボット

本研究では富士通製の研究開発用ヒューマノイドロ

ボット HOAP-3（図 2）を使用する．このロボットは

全体として 28 自由度をもち，本研究ではこのうち，

図 2 実験に使用するロボット
Fig. 2 The robot used for the experiment.

図 3 三つの位置が定義されたテーブル
Fig. 3 The table in which three positions are defined.

頭部の 3自由度と両腕の 8（各 4）自由度を使用する．

また，市販の CCDカメラ，マイクロホンを搭載して

おり，画像入力と音声入力が可能である．

本研究では椅子に固定されたヒューマノイドロボッ

トとその前に置かれたテーブルの上が実験環境となる．

フレーム問題 [10]を擬似的に回避するため，ロボット

の周囲環境をテーブル上に制限する．また，テーブル

の上に図 3 に示すように三つの位置を定義し，各位置

には一度に一つの物体しか置けないものとする．

2. 2 概 要

提案手法のアーキテクチャを図 1 に示す．提案手法

は入力層（Input Layer），パターン記憶層（Pattern

Memory Layer），シンボル記憶層（Symbol Memory

Layer）の 3 層構造を成す．このうち入力層は，記号

接地フェーズ（Symbol Grounding Phase），知識獲

得フェーズ（Knowledge Acquisition Phase），問題解

決フェーズ（Problem Solving Phase）という三つの

フェーズから構成される．これら三つのフェーズでは，

実環境から得られる画像パターンや音声パターンを入

力として受け取る．また，記号接地フェーズにおける

各パターンに付加する概念情報や，知識獲得フェーズ

におけるロボットの関節角度の時系列データ（Act1,

Act2，Act3, . . .）も入力となる．ここで図 1 の入力
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層における○，△，□は，このようにフェーズによっ

て入力されるパターンの種類が異なることを意味し

ている．パターン記憶層は入力層から送られるパター

ンを保持し，パターンをシンボルにマップするインタ

フェースとして機能する．シンボル記憶層はパターン

記憶層から送られるシンボル（A, B, . . .）を引数にと

る述語（pred）を要素に含む，実環境のモデル（World

Model）やオペレータ（Operator）を保持し，これら

はプランニング（Planning）に利用される．

（ 1） 記号接地フェーズでは，実環境から得られる

パターン入力を用い，後のフェーズで使用する物体の画

像や音声の概念を形成する．これは画像パターンと音

声パターンの学習に自己増殖型ニューラルネットワー

ク（SOINN [9]）を用いることで実現する．SOINN

は既存の学習データを破壊することなく，オンライン

追加学習が可能である．また，学習データを十分に表

現できるネットワークまで自己組織的に成長するため，

あらかじめネットワークサイズを決定しておく必要が

ない．

本研究ではパターン記憶層に画像パターン用と音

声パターン用の二つの SOINN空間（Image SOINN，

Sound SOINN）を用意する．ロボットは各パターン

を，実験者によって与えられる概念情報と合わせ，そ

れぞれの SOINNに入力する．このフェーズについて

の詳細は 2. 3で述べる．

（ 2） 知識獲得フェーズでは，ロボットは自らの行

動によって生じた実環境の変化から，その因果関係を

知識としてオンラインかつ追加的に獲得する．この因

果関係は「注意のモデル（Attention Model）」により

それぞれ一つのオペレータで表現される．注意のモデ

ルは実環境の変化から，オペレータの構成に必要な前

提条件（preCond），削除リスト（delList），追加リス

ト（addList）の三つの要素を獲得し，教示された動

作情報（Act）と合わせてオペレータを構成する．こ

のフェーズについての詳細は 2. 4で述べる．

（ 3） 問題解決フェーズでは，ロボットは知識獲得

フェーズで獲得したオペレータを運用して，実環境に

おいて汎用的な問題解決を行う．まず，ロボットは実

環境中で提示されたタスクに対して適切なアプローチ

が存在するか否かを判定する．ここで存在すると判定

された場合，一定の評価基準に従ってアプローチを選

択し，そのアプローチを実環境において実行する．こ

のとき，ロボットはオペレータの実行とそれによる実

環境の変化の観測を，目標状態に到達するまで繰り返

す．このフェーズについての詳細は 2. 5で述べる．

2. 3 記号接地フェーズ

本フェーズでは，実験で使用する物体の画像パターン

と音声パターンを SOINNで学習することで，それぞれ

の概念を形成する．SOINNについての詳細は 2. 3. 1

で述べる．各パターンの学習には，パターン記憶層に

概念の種類（本研究では画像と音声）ごとに用意された

SOINNを用いる．各パターンは，概念情報として実験

者によって与えられる教師 ID(teacherID：≥ 0,∈ Z)

と合わせて，それぞれの SOINNに入力される．この

教師 IDは，後のフェーズでパターンをシンボルに接

地する際に用いられる．

2. 3. 1 SOINN

SOINNは ShenとHasegawaが提案したオンライン

追加学習手法である．図 4 に SOINNのフローチャー

トを示す．SOINNは 2層ネットワーク構造により学

習を行うが，1層目と 2層目は同じ学習アルゴリズム

で動作する．本研究ではこれを簡略化した 1層のネッ

トワーク構造により学習を行う．そのため，1層目の

学習を終了して 2層目の学習を行うタイミングを決定

するパラメータ LT は不要である．

SOINNは入力ベクトルが与えられると，ネットワー

ク内ノードの重みベクトルとのユークリッド距離を計

算し，入力ベクトルに最も近いノード（以後，第 1勝

者ノードと表現する）と 2 番目に近いノード（以後，

第 2 勝者ノードと表現する）を探索する．そして類

似度しきい値という基準を用いて，入力ベクトルが第

1勝者ノードと同一のクラスタに属すか否かを判定す

る．ここで異なるクラスタに属すと判定された場合，

入力ベクトルを重みベクトルとしてもつ新たなノード

図 4 SOINN のアルゴリズムのフローチャート
Fig. 4 The flowchart of SOINN’s algorithm.
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をネットワークに挿入する．このときの挿入はクラス

間挿入と呼ばれる．なお，本研究で実験者によって与

えられる教師 IDは，このクラス間挿入時にノードに

付加される．

一方，同一のクラスタに属すと判定された場合，第

1勝者ノードと第 2勝者ノードの間にエッジを生成し，

第 1勝者ノードとその近傍ノードの重みベクトルを更

新する．このときの動作はクラス内挿入と呼ばれる．

SOINNはこの 2種類の挿入法によって，オンライン

かつ追加的に学習を行う．

また，SOINN は「エッジの年齢」という基準を用

いて，第 1 勝者ノードに接続しているエッジのうち，

年齢がしきい値 agedead を超えたエッジを不要と判定

し，削除する．更に，入力が λ回与えられるごとに近

傍ノード数が 1 以下のノードをノイズと判定し，削

除する．こうすることで，既存のネットワーク構造を

破壊することなく，ノイズに影響を受けたと想定され

るデータのみネットワークから削除する．SOINNの

より詳細なアルゴリズムは [9]を参照されたい．なお，

本研究では実験において学習データが少ないことを想

定し，ノードを削除する際のノイズの判定基準を近傍

ノードが存在しないものへと変更する．

2. 4 知識獲得フェーズ

本フェーズの流れを図 5 に示す．ここで「ターム

（term）」という概念を導入する．ロボットが現在の実

環境を観測している期間を 1タームとし，同一ターム

内では実環境が変化しないものとする．

本フェーズは図 5 に沿って進行する．まず，ロボッ

トはオペレータ実行前の環境として現在の実環境を観

測する．ロボットは音声入力（Sound Input）を開始

するのと同時に，位置 A から順に画像入力（Image

Input）を行い，位置 Cの画像入力を終了するのと同

時に音声入力を終了する．これで 1タームが終了する

（term1 ends）．1ターム終了時点でロボットは三つの

画像パターンと一つの音声パターンを獲得しており，

図 5 知識獲得フェーズの流れ：preWM と postWM の
WM は実環境のモデル（World Model）を意味し
ている

Fig. 5 The flowchart of knowledge acquisition phase.

これらの状態を事前に定義された述語を用いて記述し，

この環境をモデル化する（preWM）．実環境のモデル

化についての詳細は 2. 4. 1で述べる．

次に，ロボットにオペレータに伴う動作を教示する

（Action）．具体的には実験者がロボットの腕をもって

動かし，ロボットはその間の腕の動きを 8次元の時系

列データとして記録する．教示する動作によって音が

発生する場合に備え，動作の教示を開始するのと同時

にロボットに音声入力を開始させる．

動作の教示終了後，ロボットはオペレータ実行後の

環境として現在の実環境を観測する．ロボットは動作

の教示と同時に開始した音声入力を続けながら，位置

Aから順に画像入力を行い，位置 Cの画像入力を終了

するのと同時に音声入力を終了する．これで 1ターム

が終了する（term2 ends）．ロボットは獲得した情報

をもとにこの環境をモデル化する（postWM）．

最後に，ロボットはこの二つの実環境のモデルを

「注意のモデル（Attention Model）」に入力し，オペ

レータを獲得する（acquire operator）．注意のモデル

についての詳細は 2. 4. 2 で述べる．これにより獲得

したオペレータは，知識としてシンボル記憶層に保持

される．

2. 4. 1 実環境のモデル化

ロボットは実環境から得られるパターンを 1-NN法

（1-Nearest Neighbor Method）によって学習済みの

概念（シンボル）に接地する．この処理手順をアルゴ

リズム Aに示す．

アルゴリズムA．入力パターンを概念に接地する

Step1. SOINN 空間内のノード集合 A の中で，入

力パターン ξ との最近傍ノードを探索する．なお，以

下Wk をノード k のもつ結合重み，||a− b||を aと b

のユークリッド距離とする．

s = arg min
c∈A

||ξ −Wc|| (1)

Step2. 入力パターン ξ と最近傍ノード s とのユー

クリッド距離がしきい値 T 以下の場合，入力パターン

の概念を既知と判定し，最近傍ノードに付加されてい

る教師 IDを出力する．一方，しきい値 T を超えてい

る場合，入力パターンの概念を未知と判定し，−1 を

出力する．なお，以下 teacherIDk をノード kに付加

されている教師 IDとする． （終り）

if ||ξ−Ws|| ≤ T then teacherIDs else −1 (2)

入力パターンを IDに接地後，物体 xが位置 y にあ
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ることを表す At(x, y)という述語と，物体 xの音が発

生していることを表す Ring(x)という述語を用いて，

物体の状態を記述する．例えば，位置 Aで入力された

画像パターンが ID = 1と認識された場合，At(1, A)

と記述し，入力された音声パターンが ID = 2と認識

された場合，Ring(2)と記述する．

1ターム終了時点でロボットは位置 A，位置 B，位

置 C の三つの画像パターンと一つの音声パターンを

獲得しており，これらの状態をそれぞれ述語を用い

て記述する．この述語の集合を「環境モデル（World

Model：以後WM）」と表現する．

2. 4. 2 注意のモデル

一般に人間は環境の変化を注意深く観察することで，

物事の因果関係を理解する．注意のモデルはこれと同

様にして，ロボットの行動によって生じた実環境の変

化から，その因果関係をそれぞれ一つのオペレータで

表現する．注意のモデルはオペレータ実行前後の二つ

のWMから，オペレータの構成に必要な前提条件，削

除リスト，追加リストの三つの要素を獲得し，教示さ

れた動作情報と合わせてオペレータを構成する．以下，

各要素の獲得手順について述べる．

オペレータの削除リスト，追加リストは，その定義

から，二つのWM の差集合を考えることで容易に求

めることができる．一方，オペレータの前提条件は

ヒューリスティックに求めるほかはない [11]．本研究

ではオペレータ実行前のWMすべてを前提条件とす

る方法をとる．

また，本研究では未知の物体の状態を表す述語を

「不要な述語」とみなし，オペレータの各要素から不

要な述語を取り除く処理（式 (3)）を行う．なお，以

下 arg
x

(p)を述語 pの引数 xとする．

以上から，オペレータの前提条件 preCond，削除リ

スト delList，追加リスト addListを式 (4)のように

求める．

pack(WM) � {p | p ∈WM, arg
x

(p) ≥ 0} (3)

⎧⎪⎪⎨
⎪⎪⎩

preCond = pack(preWM)

delList = pack(preWM − postWM)

addList = pack(postWM − preWM)

(4)

2. 5 問題解決フェーズ

本フェーズ全体のフローチャートを図 6 に示す．本

フェーズは主に二つのステップから構成され，プラン

図 6 問題解決フェーズ全体のフローチャート
Fig. 6 The flowchart of the entire problem solving

phase.

図 7 問題解決フェーズ前半の流れ
Fig. 7 The flowchart of the first half of problem solv-

ing phase.

ニングを行うステップと，得られたプラン（オペレー

タ系列）を実環境において実行する実践ステップとに

分かれる．図 6 において，目標状態と初期状態となる

WMをプランナに入力している部分が前者に相当し，

プランナから得られたプランに含まれるオペレータを

繰り返し実行している部分が後者に相当する．

本フェーズの前半は図 7に沿って進行する．まず，実

験者は実環境中でロボットにタスクの目標状態と初期状

態を順に提示する（term1 ends，term2 ends）．ロボッ

トはそれぞれの環境を観測し，二つのWM（goalWM，

startWM）を得る．そして式 (3)によって不要な述語

を取り除いた後，これらをプランナ（Planner）に入

力する．プランナは，知識獲得フェーズで獲得したオ

ペレータ集合を用いてプランニングを行う．プランニ

ングについての詳細は 2. 5. 1で述べる．

プランナによってタスクが解決可能と判定された場

合（if solvable），ロボットは事前に実験者によって

指定された評価基準に従ってプランを選択し，そのプ

ランを実環境において実行する実践ステップに移る
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（then continue）．プランナによってタスクが解決不

可能と判定された場合（if unsolvable），ロボットは

首を横に振って実験者にそれを示す（then stop）．プ

ランの評価，実践ステップについての詳細は，それぞ

れ 2. 5. 2，2. 5. 3で述べる．

2. 5. 1 プランニング

本研究ではプランニングアルゴリズムとして，

GPS [8]の手段目標分析（Means-Ends Analysis：以

後 MEA）を用いる．MEA は現在状態と目標状態の

差異を減少させるオペレータを選択し，現在状態にそ

のオペレータを適用する処理を繰り返すことで，目標

状態を達成する手法である．

本研究におけるプランニングアルゴリズムは，標準

的なMEAを複数のプランが生成可能なように拡張し

たものであり，この処理手順をアルゴリズム Bに示す．

ここで，plann はオペレータ系列 (op1, op2, . . . , opn)

と，初期状態 S(= S0)にそのオペレータ系列を適用し

た状態 Sn から構成される．Planning(plann, G)は，

S から Sn を経て Gを満たす状態へ変換するオペレー

タ系列の集合を求める手続きである．

アルゴリズム B．Planning(plann, G)

Step1. S を初期状態となるWM，Gを目標状態と

なるWMとする．Gが S によって満たされていれば

return ({plann})
Step2. 差異 diff を Gから S を引いた差集合とし

て求める．

Step3. effectiveOpList を差異 diff を減少させ

るのに有効なオペレータ集合として求める．ここで差

異を減少させるのに有効なオペレータとは，知識獲得

フェーズで獲得したオペレータのうち，追加リストに

diff に含まれる述語を含むオペレータを指す．

Step4. successfulP lanList を S から Sn を経て

Gを満たす状態へ変換するオペレータ系列の集合とし，

空集合に初期化する．

Step5. effectiveOpList が空集合であれば，

Step14 へ．

Step6. effectiveOpList からオペレータを一つ選

択し，これを opとする．

Step7. planList1を S から Sn を経て opの前提条

件を満たす状態へ変換するオペレータ系列の集合とし

て求める．なお，以下 preCondop を opの前提条件と

する．

planList1← Planning(plann, preCondop)

(5)

Step8. planList1 が 空 集 合 で あ れ ば ，

effectiveOpListから opを削除し，Step5 へ．

Step9. planList1 からオペレータ系列を一つ選択

し，これを planm(m ≥ n)とする．

Step10. opm+1 を op，Sm+1 を planm の Sm に

opm+1 を適用したものとし，これらから planm+1 を

構成する．

Step11. planList2を S から Sm+1 を経て Gを満

たす状態へ変換するオペレータ系列の集合として求

める．

planList2← Planning(planm+1, G) (6)

Step12. planList2 が 空 集 合 で な け れ ば ，

successfulP lanListに planList2を加える．

Step13. planList1 から planm を削除し，Step8

へ．

Step14. return (successfulP lanList) （終り）

2. 5. 2 プランの評価

ロボットはプランナから複数のプランが得られた場

合，一定の評価基準に従ってプランを選択する．なお，

評価基準の切換は実験者によって行われる．

本研究では事前に以下の二つの評価基準（コスト）

を用意し，ロボットは得られた複数のプランのうち，

実験者によって指定された方のコストがより少ないプ

ランを選択する．最小コストをもつプランが複数存在

する場合は，その中からランダムに一つ選択されるも

のとする．

（ 1） オペレータ数

（ 2） 実行時間（各オペレータの実行時間の総和）

2. 5. 3 実践ステップ

本フェーズの後半は図 8 に沿って進行する．ロボッ

トは選択したプランに含まれるオペレータを，初期状

図 8 問題解決フェーズ後半の流れ
Fig. 8 The flowchart of the last half of problem solv-

ing phase.
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態から順に繰り返し実行する．このとき，ロボットは

オペレータの実行（Action）後に，実環境を観測する

ことで得られるWM（postWM）と，プランニング結

果に従うWM，つまりオペレータ実行後に想定され

るWM とを比較する必要がある．これはロボットが

動作を実行したとしても，必ずしも想定どおりに実環

境が変化するとは限らないためである．実環境の観測

後（term ends），ロボットには以下の三つの選択肢が

与えられる．

（ 1） 実環境が想定どおりに変化していない場合

（if NOT changed as expected），ロボットは首を傾

げることで実験者にそれを示し，再度同じオペレータ

の実行を試みる（then execute same operator）．

（ 2） 実環境が想定どおりに変化し，かつ実環境が

目標状態に到達していない場合（if changed as ex-

pected），ロボットは残っている次のオペレータの実

行に移る（then execute next opertator）．

（ 3） 実環境が想定どおりに変化し，かつ実環境が目

標状態に到達している場合（if achieved goal state），

ロボットはうなずくことで実験者にそれを示す（then

stop）．

実践ステップの処理手順をアルゴリズム Cに示す．

アルゴリズム C．実践ステップ

Step1. startWM を初期状態となる WM，

goalWM を目標状態となるWM とし，これらは式

(3) によって不要な述語が取り除かれているものとす

る．planWM をプランニング結果に従うWMとし，

planWM を startWM に，カウンタ cを 1に初期化

する．

Step2. プランの c 番目のオペレータ opc に付加さ

れている動作を実行し，postWM をそのとき実環境

を観測することで得られるWMとする．

Step3. postWM から式 (3)によって不要な述語を

取り除く．

Step4. planWM に opc を適用し，expectedWM

を適用後のWMとする．

Step5. 以下の式が成立したらロボットは首を傾げ，

Step2 へ．

expectedWM � postWM (7)

Step6. 以下の式が成立したらロボットはうなずき，

Step9 へ．

goalWM ⊆ expectedWM (8)

Step7. planWM を expectedWM とする．

Step8. cを 1増やし，Step2 へ．

Step9. 実践ステップを終了とする． （終り）

3. 実験 1：基本動作の確認

3. 1 概 要

実験 1では，提案手法を実装したヒューマノイドロ

ボットを用いて，提案手法の基本動作を確認する．そ

のため，本実験ではロボットによる少数（四つ）のオ

ペレータの獲得とそれによる問題解決を扱う．

3. 2 記号接地フェーズ

本実験における画像特徴には，グレースケール変換

後の 36 次元 DCT 低周波係数を用い，音声特徴には

サンプリング周波数 20 kHz，フレーム長 50 ms によ

る 15 次元スペクトル特徴を用いた．ただし音声につ

いては短時間の音について，録音区間内の周波数係数

を各次元において最大値をとり，単一ベクトル表現と

して構成した．各パターンの学習に用いる SOINNの

パラメータは，ともに agedead = 10，λ = 20とした．

本実験では図 9 に示す四つの物体を使用した．ベ

ルとドラムは各位置当り 100 回，計 300 回の画像入

力と，実験者が音を発生させることで 100回の音声入

力を行った．りんごとみかんは各位置当り 100回，計

300回の画像入力を行った．また，表 1 のように教師

IDを与えた．

3. 3 知識獲得フェーズ

本実験では実験者のサポートのもと，ロボットに以

下の四つのオペレータ（オペレータ 1～4）を獲得させ

た．なお，オペレータ 2，4 はそれぞれ，オペレータ

1，3と対称の関係にあり，ベルをドラムに，りんごを

みかんに置き換えたものである．

図 9 実験に使用した四つの物体：ベル（左上），ドラム
（右上），りんご（左下），みかん（右下）

Fig. 9 The four objects we used in the experiment:

Bell (left-top), Drum (right-top), Apple (left-

bottom), Orange (right-bottom).
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表 1 各パターンに付加する教師 ID

Table 1 The teacher ID added to each pattern data.

各パターン 教師 ID

ベル（画像） 0

ドラム（画像） 1

りんご（画像） 2

みかん（画像） 3

ベル（音声） 4

ドラム（音声） 5

図 10 オペレータ 1 を獲得する様子：左から順に，オペ
レータ実行前の環境，動作の教示の様子，オペレー
タ実行後の環境．以下，図 11～13，19～21も同様

Fig. 10 The robot acquired the operator 1.

図 11 オペレータ 2 を獲得する様子
Fig. 11 The robot acquired the operator 2.

図 12 オペレータ 3 を獲得する様子
Fig. 12 The robot acquired the operator 3.

図 13 オペレータ 4 を獲得する様子
Fig. 13 The robot acquired the operator 4.

オペレータ 1. ベルを押すと音が鳴る（図 10）

オペレータ 2. ドラムを押すと音が鳴る（図 11）

オペレータ 3. ベルの音が鳴っているときに “ちょう

だい”をするとりんごが目の前（位置 B）に移動する

（図 12）

オペレータ 4. ドラムの音が鳴っているときに “ちょ

うだい”をするとみかんが目の前（位置 B）に移動す

る（図 13）

2. 4. 1で述べたアルゴリズム Aの Step2 で用いる

しきい値 T は，画像パターンに関しては T = 50，音

声パターンに関しては T = 0.03とした．以下，本研

究の実験において，リジェクトを含む各物体の認識率

は画像パターン，音声パターン合わせて平均 97% で

あった．

3. 3. 1 オペレータ 1

図 10 にオペレータ 1を獲得する様子を示す．左か

ら順に，オペレータ実行前の環境，動作の教示の様子，

オペレータ実行後の環境を表している．まず，実験者

は位置 A にベルを置き，これをオペレータ実行前の

環境としてロボットに提示する．ロボットはこれによ

って，preWM = {At(0, A), At(−1, B), At(−1, C),

Ring(−1)} を得た．次に，実験者はベルを押す動作
をロボットに教示する．ロボットはこれによって音

が発生したことを観測し，postWM = {At(0, A),

At(−1, B), At(−1, C), Ring(4)}を得た．ロボットは
この二つのWM を注意のモデルに入力し，オペレー

タ 1を獲得した．

3. 3. 2 オペレータ 2

図 11 にオペレータ 2を獲得する様子を示す．なお，

オペレータ 2 はオペレータ 1 のベルをドラムに置き

換えたものである．この際，ロボットは preWM =

{At(1, A), At(−1, B), At(−1, C), Ring(−1)}，post-

WM = {At(1, A), At(−1, B), At(−1, C), Ring(5)}
を得た．

3. 3. 3 オペレータ 3

図 12 にオペレータ 3を獲得する様子を示す．まず，

実験者は位置 Cにりんごを置くとともに，ロボットが

オペレータ実行前の環境を観測しているときにベルの

音を発生させる．ロボットはこれによって，preWM =

{At(−1, A), At(−1, B), At(2, C), Ring(4)} を得た．
次に，実験者は “ちょうだい”をする動作をロボットに

教示する．そして実験者は動作の教示後，りんごを位置

Bに移動させる．ロボットはこれによって，postWM =

{At(−1, A), At(2, B), At(−1, C), Ring(−1)}を得た．
ロボットはこの二つのWMを注意のモデルに入力し，

オペレータ 3を獲得した．

3. 3. 4 オペレータ 4

図 13 にオペレータ 4を獲得する様子を示す．なお，

オペレータ 4 はオペレータ 3 のベルをドラムに，り

んごをみかんに置き換えたものである．この際，ロボ

ットは preWM = {At(−1, A), At(−1, B), At(3, C),

Ring(5)}，postWM = {At(−1, A), At(3, B),

At(−1, C), Ring(−1)}を得た．
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このフェーズでロボットが獲得した四つのオペレー

タを表 2 に示す．

3. 4 問題解決フェーズ

本実験では汎用のタスクとして，ロボットに以下の

三つのタスク（タスク 1～3）を提示した．これらのタ

スクは，ロボットがタスクを提示される以前に直接的

に経験したことのないものである．なお，タスク 2は

タスク 1と対称の関係にあり，ベルをドラムに，りん

ごをみかんに置き換えたものである．

タスク 1. ベルを使って目の前（位置 B）にりんご

を移動させる（図 14）

タスク 2. ドラムを使って目の前（位置 B）にみか

んを移動させる（図 15）

タスク 3. ベルを使って目の前（位置 B）にみかん

を移動させる（図 18）

3. 4. 1 タ ス ク 1

ロボットに図 14 に示す初期状態と目標状態を提示

表 2 実験 1 でロボットが獲得した四つのオペレータ：以
下，表においてオペレータを op と表記する．

Table 2 The four operators acquired by the robot in

the experiment 1.

オペレータ名
前提条件 削除リスト 追加リスト

（実行時間 [sec]）
op1（18.68） At(0, A) - Ring(4)

op2（20.16） At(1, A) - Ring(5)

op3（23.93） At(2, C) At(2, C) At(2, B)

Ring(4) Ring(4)

op4（20.46） At(3, C) At(3, C) At(3, B)

Ring(5) Ring(5)

図 14 タスク 1 の初期状態（左）と目標状態（右）
Fig. 14 The initial state (left) and the goal state

(right) for the task 1.

図 16 タスク 1 において，ロボットが最終的に目標状態に到達できた様子：左から順に，
初期状態（ターム 1 の環境），オペレータ 1 の実行の様子，ターム 2 の環境，オ
ペレータ 3 の実行の様子，ターム 3 の環境，目標状態に到達でき，うなずいてい
る様子

Fig. 16 The robot finally achieved the goal state in the task 1.

した．ロボットはこれらのWMをプランナに入力し，

このタスクを解決可能と判定した．このときにプラン

ナから得られたプランニング結果を表 3 に示す．ロ

ボットはこの結果をもとに実践ステップにてオペレー

タを実行し，最終的に目標状態に到達できた．図 16

にその様子を示す．左から順に，初期状態（ターム 1

の環境），オペレータ 1の実行の様子，ターム 2の環

境，オペレータ 3の実行の様子，ターム 3の環境，目

標状態に到達でき，うなずいている様子を表している．

表 3 タスク 1 に対するプランニング結果：今回得られた
プランは，ターム 1のWMが At(0, A), At(2, C)，
それに op1 を適用して，ターム 2 の WM が
At(0, A), At(2, C), Ring(4)，それに op3 を適用
して，ターム 3 のWM が At(0, A), At(2, B)，と
いう内容である

Table 3 The result of planning for the task 1.

ターム WM，または適用するオペレータ
1 At(0, A), At(2, C)

op1

2 At(0, A), At(2, C), Ring(4)

op3

3 At(0, A), At(2, B)

図 15 タスク 2 の初期状態（左）と目標状態（右）
Fig. 15 The initial state (left) and the goal state

(right) for the task 2.

表 4 タスク 2 に対するプランニング結果
Table 4 The result of planning for the task 2.

ターム WM，または適用するオペレータ
1 At(1, A), At(3, C)

op2

2 At(1, A), At(3, C), Ring(5)

op4

3 At(1, A), At(3, B)
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図 17 タスク 2 において，ロボットが最終的に目標状態に到達できた様子：左から順に，
初期状態（ターム 1 の環境），オペレータ 2 の実行の様子，ターム 2 の環境，オ
ペレータ 4 の実行の様子，ターム 3 の環境，目標状態に到達でき，うなずいてい
る様子

Fig. 17 The robot finally achieved the goal state in the task 2.

図 18 ロボットがタスク 3 を解決不可能と判定した様子：左から順に，初期状態，目標
状態，このタスクを解決不可能と判定し，首を横に振っている様子

Fig. 18 The robot judged to be unable to solve the task 3.

3. 4. 2 タ ス ク 2

ロボットに図 15 に示す初期状態と目標状態を提示

した．タスク 1と同様に，ロボットは表 4 に示すプラ

ンニングの結果をもとに実践ステップにてオペレータ

を実行し，最終的に目標状態に到達できた．図 17 に

その様子を示す．

3. 4. 3 タ ス ク 3

図 18 の左，中央をそれぞれ初期状態，目標状態と

するタスクは，知識獲得フェーズで獲得したオペレー

タでは解決できない．ロボットはプランナによってこ

のタスクを解決不可能と判定し，首を横に振ってそれ

を示した．図 18 にその様子を示す．

4. 実験 2：知識のオンラインかつ追加的な
獲得による問題解決能力の向上

4. 1 概 要

実験 2では，実験 1で用いたロボットに対して，知

識のオンラインかつ追加的な獲得による問題解決能力

の向上を確認する．本実験では，実験 1 と比較して

知識の組合せ数が多く，更に複数の組合せ方法が存在

するタスクを扱う．なお，本実験は実験 1に続いて行

われ，本実験で用いるロボットは実験 1で形成したパ

ターン記憶層とシンボル記憶層における記憶を保持し

ている．

4. 2 知識獲得フェーズ

本実験では実験 1の四つのオペレータ（オペレータ

1～4）に加え，ロボットに更に六つのオペレータ（オ

ペレータ 5～10）を獲得させた．このうち，オペレー

図 19 オペレータ 5 を獲得する様子
Fig. 19 The robot acquired the operator 5.

図 20 オペレータ 7 を獲得する様子
Fig. 20 The robot acquired the operator 7.

タ 5，7，9の内容を以下に示す．なお，実験 1と同様

に，オペレータ 6，8，10はそれぞれ，オペレータ 5，

7，9と対称の関係にあり，これらのオペレータと同様

の結果になったため説明は省略する．

オペレータ 5. 右手を挙げるとりんごが手元（位置

C）に置かれる（図 19）

オペレータ 7. “だだをこねる” とりんごが目の前

（位置 B）に移動する（図 20）

オペレータ 9. 左手を挙げるとベルが手元（位置 A）

に置かれる（図 21）

4. 2. 1 オペレータ 5

図 19 にオペレータ 5を獲得する様子を示す．この

際，ロボットは preWM = {At(−1, A), At(−1, B),

At(−1, C), Ring(−1)}，postWM = {At(−1, A),

At(−1, B), At(2, C), Ring(−1)}を得た．
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図 21 オペレータ 9 を獲得する様子
Fig. 21 The robot acquired the operator 9.

表 5 実験 2 でロボットが獲得した六つのオペレータ
Table 5 The six operators acquired by the robot in

the experiment 2.

オペレータ名
前提条件 削除リスト 追加リスト

（実行時間 [sec]）
op5（16.34） - - At(2, C)

op6（16.31） - - At(3, C)

op7（74.88） At(2, C) At(2, C) At(2, B)

op8（71.73） At(3, C) At(3, C) At(3, B)

op9（20.06） - - At(0, A)

op10（29.03） - - At(1, A)

4. 2. 2 オペレータ 7

図 20 にオペレータ 7を獲得する様子を示す．この

際，ロボットは preWM = {At(−1, A), At(−1, B),

At(2, C), Ring(−1)}，postWM = {At(−1, A),

At(2, B), At(−1, C), Ring(−1)}を得た．
4. 2. 3 オペレータ 9

図 21 にオペレータ 9を獲得する様子を示す．この

際，ロボットは preWM = {At(−1, A), At(−1, B),

At(−1, C), Ring(−1)}，postWM = {At(0, A),

At(−1, B), At(−1, C), Ring(−1)}を得た．
このフェーズでロボットが獲得した六つのオペレー

タを表 5 に示す．

4. 3 問題解決フェーズ

本実験ではロボットに五つのタスク（タスク 4～7，

3′）を提示した．このうち，タスク 4，6，3′ の内容を

以下に示す．なお，実験 1 と同様に，タスク 5，7 は

それぞれ，タスク 4，6 と対称の関係にあり，これら

のタスクと同様の結果になったため説明は省略する．

また，タスク 3′ は実験 1 においてロボットが解決不

可能と判定したタスク 3と同じ内容である．

タスク 4. テーブルの上に何も置かれていない状態

から目の前（位置 B）にりんごを置く（図 22）

タスク 6. テーブルの上に何も置かれていない状態

から手元（位置 A）にりんごを置く（図 26）

タスク 3′. ベルを使って目の前（位置 B）にみかん

を移動させる（図 27）

4. 3. 1 タ ス ク 4

ロボットに図 22 に示す初期状態と目標状態を提示

図 22 タスク 4 の初期状態（左）と目標状態（右）
Fig. 22 The initial state (left) and the goal state

(right) for the task 4.

表 6 タスク 4 に対するプランニング結果
Table 6 The result of planning for the task 4.

ターム
WM，または適用するオペレータ
プラン 1 プラン 2 プラン 3

1 - - -

op5 op5 op9

2 At(2, C) At(2, C) At(0, A)

op7 op9 op1

3 At(2, B) At(0, A) At(0, A)

At(2, C) Ring(4)

op1 op5

4 At(0, A) At(0, A)

At(2, C) At(2, C)

Ring(4) Ring(4)

op3 op3

5 At(0, A) At(0, A)

At(2, B) At(2, B)

表 7 各プランの評価
Table 7 The evaluation of each plan.

評価基準 プラン 1 プラン 2 プラン 3

オペレータ数 2 4 4

実行時間 [s] 91.22 79.01 79.01

した．ロボットはこれらのWMをプランナに入力し，

このタスクを解決可能と判定した．このときにプラン

ナから得られたプランニング結果を表 6 に示す．こ

のように，今回のプランニング結果には三つのプラン

が含まれていたため，ロボットは事前に指定された評

価基準に従ってプランを一つ選択した．具体的には，

2. 5. 2で述べたように，本実験では（ 1）オペレータ

数，（ 2）実行時間という二つの評価基準を用意した．

その結果，表 7 に示すように，オペレータ数を評価基

準として指定した場合プラン 1が選択され，実行時間

を評価基準として指定した場合プラン 2，またはプラ

ン 3が選択された．以下では，各プランの実践ステッ

プの結果について述べる．

（ 1） ロボットはプラン 1をもとに実践ステップに

てオペレータを実行し，最終的に目標状態に到達でき

た．図 23 にその様子を示す．

（ 2） ロボットはプラン 2をもとに実践ステップに

てオペレータを実行し，最終的に目標状態に到達でき
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図 23 タスク 4 のプラン 1 において，ロボットが最終的に目標状態に到達できた様子：
左から順に，初期状態（ターム 1 の環境），オペレータ 5 の実行の様子，ターム 2

の環境，オペレータ 7 の実行の様子，ターム 3 の環境，目標状態に到達でき，う
なずいている様子

Fig. 23 The robot finally achieved the goal state in the plan 1 for the task 4.

図 24 タスク 4 のプラン 2 において，ロボットが最終的に目標状態に到達できた様子：
左上から順に，初期状態（ターム 1 の環境），オペレータ 5 の実行の様子，ター
ム 2 の環境，オペレータ 9 の実行の様子，ターム 3 の環境，オペレータ 1 の実行
の様子，ターム 4 の環境，オペレータ 3 の実行の様子，ターム 5 の環境，目標状
態に到達でき，うなずいている様子

Fig. 24 The robot finally achieved the goal state in the plan 2 for the task 4.

図 25 タスク 4 のプラン 3 において，ロボットが最終的に目標状態に到達できなかった
様子：左上から順に，初期状態（ターム 1 の環境），オペレータ 9 の実行の様子，
ターム 2 の環境，オペレータ 1 の実行の様子，ターム 3 の環境，オペレータ 5 の
実行の様子，ターム 4 の環境，実環境が想定どおりに変化せず，首を傾げている
様子

Fig. 25 The robot didn’t finally achieve the goal state in the plan 3 for the task 4.

た．図 24 にその様子を示す．

（ 3） ロボットはプラン 3 をもとに実践ステップ

にてオペレータを実行したが，その途中，実環境

がプランニング結果どおりに変化せず，最終的に

目標状態に到達できなかった．図 25 にその様子を

示す．ここで表 6 に示すように，ロボットがオペ

レータ 5 の実行後にターム 4 として想定した WM

は {At(0, A), At(2, C), Ring(4)}であったが，実際に

観測したWM は {At(0, A), At(2, C)} であった．そ
のためロボットはその後，この環境に対してオペレー

タ 5の実行を繰り返したが，結果的に想定どおりの環

境に到達できなかった．

4. 3. 2 タ ス ク 6

図 26 の左，中央をそれぞれ初期状態，目標状態と

するタスクは，実験 1，2 で獲得したオペレータでは

解決できない．ロボットはプランナによってこのタス
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図 26 ロボットがタスク 6 を解決不可能と判定した様子：左から順に，初期状態，目標
状態，このタスクを解決不可能と判定し，首を横に振っている様子

Fig. 26 The robot judged to be unable to solve the task 6.

図 27 タスク 3′ のプラン 1 において，ロボットが最終的に目標状態に到達できた様子：
左から順に，初期状態（ターム 1 の環境），目標状態，オペレータ 8 の実行の様
子，ターム 2 の環境，目標状態に到達でき，うなずいている様子．ここで，ベル
とみかんという組合せは獲得したオペレータには存在しないことに注意されたい．

Fig. 27 The robot finally achieved the goal state in the plan 1 for the task 3′.

表 8 タスク 3′ に対するプランニング結果
Table 8 The result of planning for the task 3′.

ターム
WM，または適用するオペレータ
プラン 1 プラン 2

1 At(0, A) At(0, A)

At(3, C) At(3, C)

op8 op10

2 At(0, A) At(0, A)

At(3, B) At(1, A)

At(3, C)

op2

3 At(0, A)

At(1, A)

At(3, C)

Ring(5)

op4

4 At(0, A)

At(1, A)

At(3, B)

クを解決不可能と判定し，首を横に振ってそれを示し

た．図 26 にその様子を示す．

4. 3. 3 タ ス ク 3′

図 27 の左から 1枚目，2枚目をそれぞれ初期状態，

目標状態とするタスクは，実験 1においてロボットが

解決不可能と判定したものである．しかし本実験にお

いては，ロボットは実験 1，2 で獲得した複数のオペ

レータを複合的に運用することで，このタスクを解決

可能と判定した．このときにプランナから得られたプ

ランニング結果を表 8 に示す．このうち，プラン 1の

実践ステップの様子を図 27 に示す．ロボットはプラ

ン 1 をもとに実践ステップにてオペレータを実行し，

最終的に目標状態に到達できた．

5. 考 察

提案手法は Weng らの示す性質をすべて満たし，

1. 2で述べた優位性をもつ．また，提案手法を実装し

たヒューマノイドロボットを用いた実験により，提案

手法が実世界における汎用のタスクに対して有効であ

ることを示した．具体的には，各実験により提案手法

を実装したロボットは以下の特長をもつことが確認で

きた．

（ 1） ロボットは直接的に経験したことのないタス

クに対しても適切に行動できる：ここでいう行動とは，

自らの問題解決能力では実行できないタスクに対して，

実行できないことを示す行為も含まれる．

例えば，実験 1 のタスク 1，2 に関しては，ロボッ

トがタスクを提示される以前に直接的に経験したこと

のないものであるが，ロボットはこれらのタスクを実

行することができた．一方，タスク 3に関しては，ロ

ボットはこのタスクが実験 1で獲得したオペレータで

は実行できないことを示した．

（ 2） ロボットは知識をオンラインかつ追加的に獲

得することで自らの問題解決能力を向上させること

ができる：具体的には，以前より複雑なタスク（オペ

レータの組合せ数が多いものや複数のプランが存在す

るもの）や，以前に実行できなかったタスクを実行で

きるようになる．

例えば，実験 2のタスク 4，5に関しては，実験 1の
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タスク 1，2と比較してオペレータの組合せ数が多く，

更に複数のプランが存在するものであるが，ロボット

はこれらのタスクに対して適切に行動できた．また，

タスク 6，7 に関しては，ロボットはこれらのタスク

が実験 1，2 で獲得したオペレータでは実行できない

ことを示した．タスク 3′ に関しては，実験 1 におい

てロボットが解決不可能と判定したものであるが，ロ

ボットは実験 1，2 で獲得した複数のオペレータを複

合的に運用することでこのタスクを実行できた．

以下，まず 5. 1で提案手法の構成要素について議論

する．次に，5. 2で提案手法の適用可能性（スケーラ

ビリティ）について議論する．最後に，5. 3で提案手

法の今後の課題について議論する．

5. 1 提案手法の構成要素の検証

本研究で提案したアーキテクチャは，主に以下の三

つの構成要素からなる．

（ 1） 知覚情報のシンボル化

（ 2） 因果関係の知識化

（ 3） プランニングと実践

5. 1. 1 知覚情報のシンボル化

提案アーキテクチャの入力層の第 1フェーズである

記号接地フェーズでは，ロボットは SOINNを用いて

知覚情報（画像・音声情報）から概念となるシンボル

を形成した．このシンボル化というプロセスは，人間

がロボットと認識を共有するという点で非常に重要な

意味をもつ．人間とロボットが実世界から得られるパ

ターンに対して共通の認識をもっていることは，実世

界において人間とロボットがコミュニケーションを図

るための重要な要件である．筆者らはこれまでに，ロ

ボットが獲得した概念と言語を関連づけて，人間とロ

ボットのコミュニケーションを実現するシステムにつ

いても研究を行っている [12]．

ここでこのシンボル化に関しては，提案手法で用いて

いる SOINN以外にも Self-Organizing Map（SOM）

を用いた手法も提案されている [13]．また，シンボル

化の対象が時系列相関が存在する実環境の変化であ

るとすれば，時系列データの取扱いが可能な Hidden

Markov Model（HMM），Recurrent Neural Network

with Parametric Bias（RNNPB）を用いた手法の利

用も考えられる [14], [15]．しかし，一般にこれらの手

法はいずれもノード数や状態数といった内部構造をあ

らかじめ決めておく必要があるため，オンライン追加

学習に適さない．なお，これらの手法の中にはオンラ

イン追加学習が原理的に可能なものもあるが，[16] で

指摘されているように HMM によるものは初期認識

精度や追加学習による認識精度の向上に対して問題が

ある．また，RNNを用いたオンライン追加学習に関

する研究 [17] では，不完全な内部モデルが構築され，

ロボットの挙動が不安定になるといった問題が見られ

ている．これに対し，SOINNによるオンライン追加

学習ではあらかじめ内部構造を決めておく必要がなく，

更に高いノイズ耐性も期待できる．このような性質は，

Weng らの示す性質 IV. V. を満たすのに必要不可欠

である．

本研究の実験においても，SOINNの性質はパター

ン認識において有効であった．実験で扱った認識対象

は，画像，音声に関してそれぞれ四つ，二つと少数で，

実験環境も理想化されてはいたが，オンラインかつ追

加的に学習した物体の認識率は実験の進行に支障を来

さない程度（平均 97%）に収めることができた．ただ

し，画像認識に関しては物体を図 3 に示す三つの位

置に一定の向きで配置する必要があり，物体画像のア

フィン変換等には対処できない．また，音声認識に関

しても非常に静かな環境で行われ，雑音環境下では認

識精度が下がる．しかしながら，こういったパターン

認識の技術は知能ロボットの基盤技術として重要な役

割を果たす．本研究では知能アーキテクチャの提案が

研究の主旨であるという理由から，ロボットのパター

ン認識機能をシンプルな手法で実装したが，今後パ

ターン認識機能の強化も主要な課題の一つとして検討

していく必要がある．

5. 1. 2 因果関係の知識化

提案アーキテクチャの入力層の第 2フェーズである

知識獲得フェーズでは，ロボットは自らの行動によっ

て生じた実環境の変化から，その因果関係を知識とし

て獲得した．提案手法では，ロボットはこうした知識

をオンラインかつ追加的に獲得することによって，自

らの問題解決能力を向上させることができる．ここで，

提案手法で獲得する知識は必ずしも特定のタスクと 1

対 1に対応しているわけではない．提案手法では，ロ

ボットは獲得した知識から新たな知識を生成すること

もでき，これは自らの問題解決能力を “自力で” 向上

できることを意味する．つまり，ここにWengらのい

う “知能発達”が実現されている．

この知能発達の実現は，提案手法において知識をオ

ペレータとして表現していることが大きな要因となっ

ている．1. で述べたように，従来の知能ロボットに

おける知識は if-then ルールとして組み込まれてき
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た．ここで知識という観点からの，if-thenルールと

提案手法におけるオペレータとの明確な違いは，知識

の応用性，つまり外部から追加的に知識を与えられる

ことなく，既存の知識のみからロボットが自ら知的に

発達できるかという点にある．一般に if-thenルール

はある特定のタスクを解決するための知識にすぎず，

いわばそのタスクに閉じた知識といえる．たとえこの

if-thenルールを追加的に獲得するシステムを構築し

たとしても，そのシステムの問題解決能力として獲得

した知識をそのまま再現する以上のことは期待できな

い．一方，提案手法におけるオペレータは，それを獲

得した後に行われる問題解決を見据えた知識である．

言い換えれば，提案手法における知識はオペレータの

形式をしていることで，既存のプランニング技術（プ

ランナ）を用いて運用できる．つまりこれはロボット

が “自力で” 新たな知識を生成し，結果として問題解

決能力を自ら向上できるということであり，Wengら

の示す性質 III.を満たすことができる．

また，因果関係の知識化という観点からは，提案手

法において知識となるオペレータは，オペレータ実行

前後の実環境をモデル化し，それらを比較することで

得られる．ここで，実環境の変化を時系列データとと

らえるならば，HMM等を利用して実環境の変化を表

現するアプローチも考えられる．確かに特定の時系列

データを単にシンボルとして扱うだけならば，こうし

た手法でも実現可能である．しかし，提案手法では知

識を獲得するだけでなく，それが問題解決に利用可能

であることが重要であるため，HMM等のように知識

を獲得するまでに留まる手法は有効ではない．先にも

述べたように，獲得した知識を問題解決に利用するに

は，それがオペレータの形式をしている必要がある．

しかし HMM等によって獲得されたシンボルは，提案

手法における環境モデルのように各要素に分割して，

それらをダイナミックに組み換えることができないた

め，これを実現できない．つまり，そのようにして獲

得された知識は特定の問題解決のための情報にすぎず，

汎用の問題解決に利用する知識としては適していない．

以上の点から，本研究で提案する因果関係の知識化の

手法はシンプルでありながら有効な手法といえる．

5. 1. 3 プランニングと実践

提案アーキテクチャの入力層の第 3フェーズである

問題解決フェーズでは，ロボットは実環境の汎用のタ

スクに対して，獲得したオペレータを運用してプラン

ニングを行い，その結果を実際の行動として実践する

ことができた．ここで，実践ステップにおいてロボッ

トが実環境に対して単に行動を示すだけでなく，行動

による実環境の変化の予測とその結果の確認を繰り返

している点に注意されたい．すなわち，1.で述べたよ

うにロボットの身体性はロボットが知識を獲得する過

程で重要であるが，更にロボットが知識を行動として

表現する過程においても，身体性に基づく行動の結果

の確認を導入することで，実環境においてロボットが

確実に目標状態に到達できるようになる．

次に，プランニングと実践ステップの実験結果につ

いて議論する．第 1にプランニングについては，その

計算時間はプランナの性能や獲得したオペレータ数に

依存するが，実験では実時間で計算することができた．

つまり，ロボットはタスクを提示されてから計算のた

めに静止することなく，即座に行動に移ることができ

た．ただし，獲得したオペレータ数が増えるにつれて

計算時間も増えていくことが想定されるため，これに

ついては今後検討する必要がある．この点については

5. 3 で更に言及する．第 2 に実践ステップについて

は，タスク 4のプラン 1とプラン 2は，プランニング

結果を実環境において正確に再現することができ，目

標状態に到達できた．一方プラン 3では，その実践ス

テップにおいてプランニング結果とは異なる事態が発

生し，ロボットはそれに対処できず，最終的に目標状

態に到達できなかった．これは，提案手法が実環境を

静的と仮定していることに起因する．実際には実環境

は動的であり，実践ステップのステップ数が長くなる

ほど過去の環境が変化する可能性がある．具体的には

タスク 4のプラン 3において，ターム 3で達成された

Ring(4) がターム 4 で解除されてしまった（図 25）．

このような不測の事態に対しては，ロボットは単に特

定のオペレータの実行を繰り返すだけでなく，その原

因を究明し，再プランニングの必要性について吟味す

る必要がある．この点についても今後検討する必要が

ある．

5. 2 提案手法の適用可能性の検証

知能ロボットの研究において，システムの適用可能

性は重要な論点となっている．本研究においては，提

案手法が実世界のどの程度の規模のタスクにまで対応

できるかという点が主な論点となる．

まず，提案手法を実装する対象に関しては，本研究

の実験ではヒューマノイドロボットに実装したが，提

案手法はそれ以外の形態のロボット（移動ロボット等）

にも実装可能である．提案手法は実装する対象のもつ
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機能に合わせて容易に拡張可能であり，この点は 1. 2

で述べたように，提案手法の主要な優位性の一つで

ある．

次に，プランニングの規模に関しては，本研究の実

験では二つのオペレータの組合せ，かつプランが一つ

しか存在しないもの（表 3，表 4）から，最大四つの

オペレータの組合せ，かつ三つのプランが存在するも

の（表 6）まで扱った．提案手法では既存のプランナ

を用いてプランニングを行っているため，計算時間を

考慮しなければオペレータの組合せ数に原理的に制限

はなく，複数のプランが存在するものにも対応できる．

また，提案手法ではプランナがモジュールとして独立

して動作するため，少なくともプランナ本来の性能を

期待できる．

つまり，提案手法の適用可能性を議論する上で最大

の問題となるのは，タスクや知識をどのようにモデル

化するかということである．具体的には，主に以下の

三つの問題が挙げられる．

第 1に，ロボット自身が置かれている環境（実環境）

をどこまで記述（モデル化）する必要があるかという

問題がある．これはフレーム問題に関連するもので，

提案手法では注意の範囲というフレームを用意するこ

とで，この問題を擬似的に回避している．

第 2に，実環境をモデル化する際に用いる述語の不

足に関する問題がある．提案手法では物体の状態を表

す述語として At，Ring という二つの述語を事前に定

義したが，つまりこれはロボットがこの二つ以外の物

体の状態を観測できないことを意味する．例えば，ロ

ボットが「スイッチを押すと灯りがつく」という知識

を獲得しようとしたとき，提案手法では灯りがついて

いることを表す Lightといった述語が定義されていな

いため，この現象を観測できない．

第 3に，これまでに議論してきた理由以外でモデル

化しがたいタスクや知識が存在するという問題がある．

例えば，「困っている人がいたら助ける」といった抽象

度の高いタスク，または知識は，そのタスクの初期状

態や目標状態，またはその知識を表現するオペレータ

の各要素を表現しがたい．

以上のように，提案手法を実世界における一般問題

解決システムとして考えた場合，依然解決すべき課題

が数多く残されている．筆者らは本研究を実世界にお

いて知的に振る舞うヒューマノイドロボットの実現に

向けた基盤研究ととらえ，今後も議論を重ねていく予

定である．

5. 3 今後の課題

5. 1，5. 2で述べてきた課題に加え，提案手法には

更に以下のような点が求められる．
• 知識の整理が求められる．ロボットが獲得した

オペレータの中には，似通ったものや要素に不必要な

述語を含むものが存在することが想定される．このよ

うなオペレータは，プランニング時の計算時間の増大

や，実践ステップにおけるプランニング結果の再現性

の低下を招く．しかしながら，2. 4. 2で述べたように，

ロボットがオペレータの内容を一度で正確に獲得する

方法はない．つまりオペレータはロボットが試行錯誤

的に獲得する必要があり，その上で獲得したオペレー

タを的確に整理・統合できないか現在検討中である．
• 注意の範囲の拡大が求められる．提案手法では

ロボットの注意の範囲を事前に定義した位置に制限し

た．しかし実世界においては，ロボットはより広い範

囲を観測できることが求められる．
• 処理の連続性が求められる．現状では実験者が

タームやフェーズの区切りをロボットに与えることで

時間を離散的に扱っているが，今後は連続的な時間に

おいてロボット自身がこの区切りを判定できることが

望ましい．こうすることで，ロボットは実験者から一

方的に教示を受けるばかりでなく，自らの能動的な行

動からも知識を獲得できるようになる．

6. む す び

本研究では，実世界における一般問題解決システム

の構築を目的とし，既存のプランナを利用した 3層構

造のアーキテクチャを提案した．提案手法は SOINN

により物体の概念を形成し，また，環境や人間との相

互作用を通じて行動の因果関係をオペレータとしてオ

ンラインかつ追加的に獲得する．更に，獲得した複数

のオペレータを既存のプランナにより能動的に運用し，

実世界における汎用的な問題解決が可能である．提案

手法はWengらの示す性質をすべて満たし，1. 2で述

べた優位性をもつ．

本研究では既存のプランナとして GPS を使用し，

提案手法を実装したヒューマノイドロボットを用いた

実験により，提案手法が実世界における汎用のタスク

に対して有効であることを示した．具体的には，各実

験により提案手法を実装したロボットが（ 1）直接的

に経験したことのないタスクに対しても適切に行動で

き，（ 2）知識をオンラインかつ追加的に獲得すること

で自らの問題解決能力を向上できることが確認できた．
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現在，5. 3に挙げられるような課題を克服し，実世

界において知的に振る舞うヒューマノイドロボットの

実現に向けて研究中である．
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